If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8+4x=0
a = 2; b = 4; c = -8;
Δ = b2-4ac
Δ = 42-4·2·(-8)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{5}}{2*2}=\frac{-4-4\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{5}}{2*2}=\frac{-4+4\sqrt{5}}{4} $
| -2x-x+3=-12 | | -3.1p-15.91-7.8=11.82-1.2p | | 3^2-5x=-2 | | -9n-3=-18-11n+n | | 29x^2-5x+142=0 | | 25=w+10 | | -19-15t=-14t | | 124=2y | | 4-8s=-10-7s | | 17.08-2.9c=3.99-3.6c | | 32/x=8/9 | | -15-20+19d=19+13d | | v+3.9=5.41 | | -20+17y=15y+20 | | x-2.7=9.14 | | -2017y=15y+20 | | -2x-14=6x | | 9+2n=21.n= | | 16z=15z+20 | | 16z=15z+10 | | 0=-16t+600 | | -5t+2t-2=-8-4t | | x^4+6x^3+2x^2-96x-144=0. | | 3(y+1)=4y+21 | | t/5-3=19 | | 5/6x-1/3=12-2/5x | | x+3(2x-1)=4(2-x) | | -8p-6=-9p | | X=17.5-2y | | -2m+8=-2-3m | | -10+j=10-9j | | -2-u=-6u=10+7u |